Machine learning security (Python) (MLSEC-P)

 

Course Overview

Your machine learning application works as intended, so you are done, right? But did you consider somebody poisoning your model by training it with intentionally malicious samples? Or sending specially-crafted input – indistinguishable from normal input – to your model that will get completely misclassified? Feeding in too large samples – for example, an image of 16Gbs to crash the application? Because that’s what the bad guys will do. And the list is far from complete.

As a machine learning practitioner, you need to be paranoid just as any developer out there. Interest in attacking machine learning solutions is gaining momentum, and therefore protecting against adversarial machine learning is essential. This needs not only awareness, but also specific skills to protect your ML applications. The course helps you gain these skills by introducing cutting edge attacks and protection techniques from the ML domain.

Machine learning is software after all. That’s why in this course we also teach common secure coding skills and discuss security pitfalls of the Python programming language. Both adversarial machine learning and core secure coding topics come with lots of hands on labs and stories from real life, all to provide a strong emotional engagement to security and to substantially improve code hygiene.

So that you are prepared for the forces of the dark side.

So that nothing unexpected happens.

Nothing.

Who should attend

Python developers working on machine learning systems

Course Objectives

  • Getting familiar with essential cyber security concepts
  • Learning about various aspects of machine learning security
  • Attacks and defense techniques in adversarial machine learning
  • Input validation approaches and principles
  • Identify vulnerabilities and their consequences
  • Learn the security best practices in Python
  • Managing vulnerabilities in third party components
  • Understanding how cryptography supports security
  • Learning how to use cryptographic APIs correctly in Python

Course Content

  • Cyber security basics
  • Machine learning security
  • Input validation
  • Security features
  • Time and state
  • Errors
  • Using vulnerable components
  • Cryptography for developers
  • Wrap up

Prix & Delivery methods

Formation en ligne

Durée
4 jours

Prix
  • sur demande
Formation en salle équipée

Durée
4 jours

Prix
  • sur demande

Agenda

FLEX Classroom Training (hybrid course):   Course participation either on-site in the classroom or online from the workplace or from home.

Anglais

Fuseau horaire : Heure normale d'Europe centrale (HNEC)

Formation en ligne
Option présentielle : Berlin, Allemagne
Fuseau horaire : Heure normale d'Europe centrale (HNEC)
Formation en ligne
Option présentielle : Munich, Allemagne
Fuseau horaire : Heure d'été d'Europe centrale (HAEC)
Formation en ligne
Option présentielle : Francfort, Allemagne
Fuseau horaire : Heure d'été d'Europe centrale (HAEC)
Formation en ligne
Option présentielle : Hambourg, Allemagne
Fuseau horaire : Heure normale d'Europe centrale (HNEC)
FLEX Classroom Training (hybrid course):   Course participation either on-site in the classroom or online from the workplace or from home.

Allemagne

Berlin Langue : Anglais
Munich Langue : Anglais
Francfort Langue : Anglais
Hambourg Langue : Anglais

Si vous ne trouvez pas de date adéquate, n'hésitez pas à vérifier l'agenda de toutes nos formations FLEX internationales