MLOps Engineering on AWS (MLOE)

 

Course Overview

This course builds upon and extends the DevOps methodology prevalent in software development to build, train, and deploy machine learning (ML) models. The course is based on the four-level MLOPs maturity framework. The course focuses on the first three levels, including the initial, repeatable, and reliable levels. The course stresses the importance of data, model, and code to successful ML deployments. It demonstrates the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course also discusses the use of tools and processes to monitor and take action when the model prediction in production drifts from agreed-upon key performance indicators.

Who should attend

This course is intended for:

  • MLOps engineers who want to productionize and monitor ML models in the AWS cloud
  • DevOps engineers who will be responsible for successfully deploying and maintaining ML models in production

Prerequisites

We recommend that attendees of this course have

Course Objectives

In this course, you will learn to:

  • Explain the benefits of MLOps
  • Compare and contrast DevOps and MLOps
  • Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
  • Set up experimentation environments for MLOps with Amazon SageMaker
  • Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
  • Describe three options for creating a full CI/CD pipeline in an ML context
  • Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
  • Demonstrate how to monitor ML based solutions
  • Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data

Prix & Delivery methods

Formation en ligne

Durée
3 jours

Prix
  • CHF 2 390,–
Formation en salle équipée

Durée
3 jours

Prix
  • Suisse : CHF 2 390,–

Agenda

Instructor-led Online Training:   Course conducted online in a virtual classroom.
FLEX Classroom Training (hybrid course):   Course participation either on-site in the classroom or online from the workplace or from home.

Français

European Time Zones

Formation en ligne
Formation en ligne
Formation en ligne

Anglais

European Time Zones

Formation en ligne
Formation en ligne
Formation en ligne
Formation en ligne

6 heures de différence to Heure normale d'Europe centrale (HNEC)

Formation en ligne Fuseau horaire : Eastern Daylight Time (EDT)
Formation en ligne Fuseau horaire : Eastern Daylight Time (EDT)

7 heures de différence to Heure normale d'Europe centrale (HNEC)

Formation en ligne Fuseau horaire : Central Daylight Time (CDT)
Formation en ligne Fuseau horaire : Central Daylight Time (CDT)

9 heures de différence to Heure normale d'Europe centrale (HNEC)

Formation en ligne Fuseau horaire : Pacific Daylight Time (PDT)
Formation en ligne Fuseau horaire : Pacific Daylight Time (PDT)
FLEX Classroom Training (hybrid course):   Course participation either on-site in the classroom or online from the workplace or from home.

Suisse

Zurich
Zurich
Zurich
Zurich
Zurich
Zurich

Allemagne

Munich
Francfort
Hambourg
Berlin
Francfort

Si vous ne trouvez pas de date adéquate, n'hésitez pas à vérifier l'agenda de toutes nos formations FLEX internationales