Kursüberblick
Dieser Workshop soll Sie bei der Entwicklung von KI-Agenten und Copiloten mit Azure OpenAI unterstützen. Der Workshop ist in vier Module unterteilt, die jeweils unterschiedliche Aspekte der Entwicklung von KI-Lösungen mit Azure OpenAI abdecken. Er bündelt die folgenden Microsoft Applied Skills Kurse und vertieft den Semantic Kernel. Um ein vollständiges Bild des KI-Entwicklungsprozesses zu vermitteln, haben wir das Modul zur Überwachung und Bereitstellung von LLM-Anwendungen hinzugefügt:
- Develop Generative AI Solutions with Azure OpenAI Service (AI-050T00)
- Develop generative AI apps in Azure AI Foundry portal (AI-3016)
- Develop AI agents using Azure OpenAI and the Semantic Kernel SDK (AZ-2005)
Zielgruppe
KI-Entwickler, die lernen möchten, wie man KI-Agenten erstellt, oder die eine oder mehrere angewandte Fertigkeiten erwerben möchten.
Voraussetzungen
Kenntnisse in C# und Python sind nützlich.
Kursziele
Erstellen Sie KI-Agenten und bereiten Sie sich auf die 3 angewandten Fertigkeiten vor.
Kursinhalt
Modul 1: Entwicklung generativer KI-Lösungen mit Azure OpenAI Service
In diesem Modul wird der Azure OpenAI Service vorgestellt. Es wird erläutert, wie man darauf zugreift, generative KI-Modelle erforscht und sie einsetzt. Es erklärt die Unterschiede zwischen Vervollständigungen und Chat und wie man Aufforderungen verwendet, um Vervollständigungen von Modellen zu erhalten. Darüber hinaus wird das Testen von Modellen in den Playgrounds von Azure OpenAI Studio und die Integration von Azure OpenAI in Anwendungen mithilfe von REST API und SDK erläutert. Das Modul befasst sich auch mit der Entwicklung von Prompts, der Generierung von Code und Bildern, der Implementierung von Retrieval Augmented Generation (RAG) und der Planung verantwortungsvoller generativer KI-Lösungen.
Modul 2: Entwicklung eigener Copiloten mit Azure AI Studio
Dieses Modul bietet eine Einführung in Azure AI Studio und stellt die wichtigsten Funktionen, Möglichkeiten und Anwendungsfälle vor. Es erklärt, wie Sie eine RAG-basierte Copilot-Lösung mit Ihren eigenen Daten erstellen und die Grundlagen der Entwicklung von Copiloten mit Prompt Flow. Das Modul behandelt die Integration eines fein abgestimmten Sprachmodells in Ihren Copiloten und die Bewertung seiner Leistung. Es wird betont, wie wichtig es ist, den Entwicklungslebenszyklus zu verstehen und LangChain in Prompt Flow zu verwenden.
Modul 3: Entwicklung von KI-Agenten mit Azure OpenAI und dem Semantic Kernel SDK
Dieses Modul konzentriert sich auf die Entwicklung von KI-Agenten mit dem Semantic Kernel SDK, beginnend mit dem Verständnis des Zwecks von Semantic Kernel und effektiven Prompting-Techniken. Es wird erklärt, wie man KI-Agenten mit Hilfe von nativen Funktionen Fähigkeiten verleiht und Plugins für Semantic Kernel erstellt. Das Modul behandelt auch die Bereitstellung von Status und Historie mit Kernel Memory, die Verwendung intelligenter Planer und die Integration verschiedener KI-Dienste mit Semantic Kernel. Darüber hinaus werden die Implementierung von Copiloten und Agenten, die Erledigung von Mehrschrittaufgaben und die Verwendung von Personas mit Agenten behandelt.
Modul 4: Überwachung und Bereitstellung von LLM-Anwendungen
Dieses Modul umreisst den Bereitstellungsprozess für LLM-Anwendungen, einschliesslich einer Einführung in Azure Container Apps und wie LLM-Anwendungen darauf bereitgestellt werden können. Es wird erklärt, wie man Azure OpenAI für .NET Chat mit RAG mit Azure Container Apps skaliert und dynamische Sitzungen verwaltet. Das Modul behandelt auch die Überwachung und Verwaltung von LLM-Anwendungen, um eine optimale Leistung zu gewährleisten.
Dieser Text wurde automatisiert übersetzt. Um den englischen Originaltext anzuzeigen, klicken Sie bitte hier.